Voltage division with a potentiometer

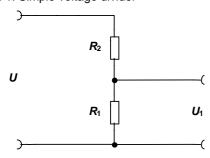
Aim of the experiment

- Investigation of a simple voltage divider
- Investigation of a loaded voltage divider
- Setup of a voltage divider with potentiometer

Foundations

Kirchhoff's voltage law states that the sum of all voltages in a closed loop is equal to zero.

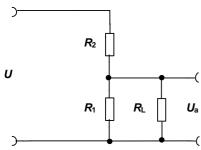
With a voltage divider it is possible to divide up voltages and in particular tap lower partial voltages. A voltage divider generally consists of two resistors, between which the applied U is divided into two partial voltages (voltage drops). Voltage dividers are used for example in measuring probes or to set operating points (voltage conditions) for active components, e.g. with a transistor/amplifier circuit.


In an initial test a voltage divider is created from various resistors and the output voltages in particular are measured. In a second test the loaded voltage divider is tested. Finally, a voltage divider with a potentiometer is set up and the output voltage is measured.

Devices

1 plug-in board, DIN A4 1 set 10 bridging plugs		
1 STE resistor 47 Ω	577 577 577	32 34 40
1 DC power supply, 0± 15 V	531	120

Fig. 1: Simple voltage divider


With non-loaded voltage dividers the current strength I results from the applied voltage U and the sum of the resistors R_1 und R_2 :

$$I = \frac{U}{R_1 + R_2} \tag{1}$$

and thereby for the voltage drop, e.g. at resistor R_1

$$U_1 = I \cdot R_1 = U \cdot \frac{R_1}{R_1 + R_2} \tag{2}$$

Fig. 2: Loaded voltage divider

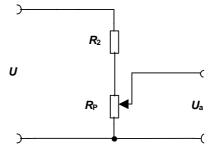
With a loaded voltage divider a current additionally flows via a load resistor $R_{\rm L}$. This results in the current strength I increasing along with the voltage drop across resistor $R_{\rm 2}$ and thereby a drop in the output voltage $U_{\rm a}$.

The following applies to resistor R_1^* (parallel connection of R_1 and R_1):

$$R_{1}^{*} = \frac{R_{1} \cdot R_{L}}{R_{1} + R_{L}} \tag{3}$$

and thereby to the current strength:

$$I = \frac{U}{R_2 + \frac{R_1 \cdot R_L}{R_1 + R_L}} \tag{4}$$


and for the voltage taken per (2):

$$U_{a} = U \cdot \frac{R_{1}^{*}}{R_{1}^{*} + R_{2}} \tag{5}$$

or

$$U_{a} = U \cdot \frac{R_{1}}{R_{1} + R_{2} + \frac{R_{1} \cdot R_{2}}{R_{1}}}$$
 (6)

Fig. 3: Voltage divider with potentiometer

With a potentiometer with a resistor R_P the voltage drop per (2) is

$$U_{\mathsf{P}} = U \cdot \frac{R_{\mathsf{P}}}{R_{\mathsf{P}} + R_{\mathsf{P}}} \tag{7}$$

This allows an accordant adjustment of the voltage U_a between 0 V and U_P via the respective component resistor.

The resistor R_2 serves here as a series resistor, so that no short circuit can be set.

Apparatus and method

Note: Observe the measurement quantities and polarities at the measuring devices with all tests.

a) Simple voltage divider

- Set up test in accordance with Fig. 1 with R_2 = 100 Ω. First apply no resistance for R_1 (i.e. R_1 = ∞).
- Set voltage U at the power supply to 15 V.
- Measure the current strength I and voltage U₁ and note these in Table 1.
- Set the resistances R₁ per Table and repeat the measurement each time.

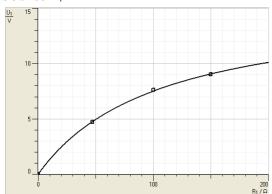
b) Loaded voltage divider

- Set up test in accordance with Fig. 2 with R_1 = 470 Ω and R_2 = 100 Ω . First apply no resistance to resistor R_L (i.e. $R_L = \infty$)
- Set voltage U at the power supply to 15 V.
- Measure the current strength I_L and voltage U_a and note these in Table 2.
- Set the load resistances R_L per Table 2 and repeat the measurement each time.

c) Voltage divider with potentiometer

- Set up the test per Fig. 3. First insert a bridging plug for resistor R_2 (i.e. $R_2=0\,\Omega$)
- Set voltage U at the power supply to 15 V.
- Actuate the potentiometer and observe voltage U_a.
 Measure the minimum and maximum voltage U_a each time and note these in Table 3.
- Set the (series) resistances R₂ per Table 3 and repeat the measurement each time.

Measurement examples and evaluation


a) Simple voltage divider

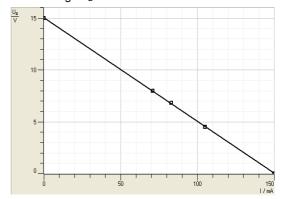
Tab. 1: Single voltage divider ($R_2 = 100 \Omega$)

	Measured values		$\frac{U_1}{V}$ calculated with:	
$\frac{R_1}{\Omega}$	$\frac{I}{mA}$	$\frac{U_1}{V}$	$R_1 \cdot I$	$U \cdot \frac{R_1}{R_1 + R_2}$
~	0	15.0	0	15*
150	60	9.0	9.0	9.0
100	73	7.6	7.3	7.5
47	100	4.7	4.7	4.8
0	150	0	0	0

(* through limit value evaluation)

- Calculate voltage U_1 and enter in Table 1.
- Enter the partial voltage U₁ in the graph against the resistance R₁:

- The output voltage U_1 depends on the size of the resistance R_1 .
- The greater the resistance R₁ the greater the recorded voltage drop U₁.

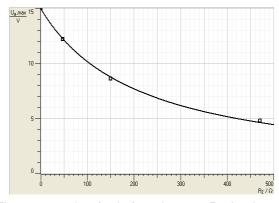

b) Loaded voltage divider

Tab. 2: Loaded voltage divider $(R_1 = 470 \ \Omega \text{ and } R_2 = 100 \ \Omega)$

	Measured values		calculated with (4)	calculated with (6)
$\frac{R_{L}}{\Omega}$		<u><i>U</i>a</u>		<u><i>U</i>a</u>
Ω	mA	V	mA	V
8	27	12.5	26*	12.4
150	71	7.9	70	8.0
100	83	6.7	82	6.8
47	105	4.4	105	4.5
0	150	0	150	0*
/4 /1	1 11 14 1			

(* through limit value evaluation)

 The lower the load resistance, i.e. the more strongly the voltage divider is loaded, the lower the output voltage. Enter the output voltage U_a in the graph against the current strength I_L:


- The output voltage U_a drops with the current strength I_L
- The maximum current strength is limited to 150 mA by the series resistor R₂.

c) Voltage divider with potentiometer

Tab. 3: Voltage divider with potentiometer $R_P = 220 \Omega$

$\frac{R_2}{\Omega}$	$\frac{U_{\rm a,min}}{\sf V}$	$\frac{U_{a,max}}{V}$	$\frac{U \cdot \frac{R_{P}}{R_{P} + R_2}}{V}$
0	0	15.0	15.0
47	0	12.2	12.4
150	0	8.6	8.9
470	0	4.8	4.8

- Calculate voltage U_P and enter in Table 3.
- It is possible to set an infinitely variable >output voltage from 0 V to a max. U_P with the potentiometer.
- Enter the max. output voltage U_{a,max} in the graph against the resistor R2:

 The greater the (series) resistance R₂ the lower the maximum recorded voltage drop U_{a,max}. _