Hooke's law - Stand setup

Object of the experiment

1. Investigating the relation between the force acting on a helical spring and the spring elongation

Setup

Apparatus

1 helical spring, 32 N/m 35212
1 Weight, $0.1 \mathrm{~kg} . ~$
6 10

Carrying out the experiment

- Suspend the helical spring from the clamp with hook.
- Mark the lower edge of the unloaded helical spring with a pointer and define this point to be the zero.
- Suspend the weights 0.1 kg and 0.2 kg from the helical spring as acting force F.
- Mark the lower edge of the helical spring, which now is elongated, with the second pointer.
- Measure the spring elongation s between the two pointers.
- Enhance the acting force F by suspending further weights, and measure the corresponding spring elongations.

Measuring example

Mass m in kg	*Force F in N	Spring elongation s in cm
0	0	0
0.3	3	9
0.5	5	15
0.7	7	21
1.0	10	30

* $F=m \cdot g$ (round values)

At a helical spring, the acting force and the spring elongation are proportional: $F \sim s$.

The ratio of the force F and the elongation s is a constant, which is called spring constant $D: \frac{F}{S}=D$.

