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Experiment Objectives 

  Recording a torsion pendulum's amplitude as a function of time. 

  Determining the damping coefficients. 

  Studying the transition from underdamping to critical damping and to overdamping. 

Recording and evaluating with CASSY 
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Fundamentals 

Oscillations and waves are very important both in nature and 
in technology. The study of related phenomena therefore 
requires both the experimental and the theoretical angles. 
This helps understand the fundamental models and laws of 
physics. 

Rotational oscillations represent a special case of mechanical 
oscillations. Yet all major phenomena can be studied on 
them. 

This experiment studies free rotational oscillations at different 
damping states. 

 

 

 

 

 

 

The physical value that fully describes the system's state at 
the given time t is the angle of deflection φ(t) from the rest 
position (where φ = 0). 

The spiral spring's effect on the torsion pendulum is given by 
Hooke's law: 

         φ( ) 

where D is the spring constant and    the torque on the tor-

sion pendulum resulting from the spring. 

In addition, the eddy-current brake exerts a torque on the 
pendulum: 

         φ̇    

where k is the constant of friction and φ̇    the first time de-

rivative of the angle of deflection, so the angular velocity. 

 

Fig 1: Experiment setup for free rotational oscillations with damping 
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The sum of the two torques adds up to the negative total 
torque (since it is reversed): 

                

for which, per Newton: 

         φ̈( ) 

where I is the torsion pendulum's moment of inertia and φ̈    

the angular acceleration. 

Hence: 

     φ̈          φ̇( )       φ( )                       

 

Equation (1) is the equation of motion describing the free, 
damped oscillation. It is thereby a second-order ordinary, 
homogeneous, linear differential equation with a unique, 
known solution. 

Introduce the following values to express the formulas more 
clearly: 

 Damping coefficient 

    
 

   
 

 Natural frequency of the undamped torsion pendulum 

     √ 
 

 
 

 Frequency of the damped torsion pendulum 

     √  
       

(exists only for        ). 

 

Mathematically as well as physically, the following three cas-
es can be distinguished: 

 

Underdamped        

The damping is low. In this case, the general solution to 
equation (1) goes 

 φ( )          (                     )             

Constants A and B are defined by the values specified for the 
launching angle φ( )   φ

 
 and the launching angle velocity 

φ̇( )   φ
 ̇
, thus producing 

    φ
 
        [ 

φ
 ̇
   φ

 
   

 
 ]   

From equation (2) we can say that the amplitude decreases 

with time by a factor of  -  , i.e. it is halved after the half-life 

     
    

 
 and that the damping ratio of two consecutive ampli-

tudes is constant,     
φ
   

φ
 

    -    

Thereby     
   

 
 is the period of the damped oscillation. The 

exponent 

                
φ
 

φ
   

      
 

 
   

is designated as a logarithmic damping decrement. 

 

Critically damped (or aperiodic boundary case)        

If the damping is large enough, the pendulum quickly moves 
to the rest position from the deflected state without crossing 
the rest position. In this case, the solution to equation (1) 
goes 

 φ( )          (         )         

with constants 

    φ
 
         φ

 ̇
  φ

 
      

This is no longer a periodic curve, so the solution (3) does not 
feature the angular frequency   (therefore the designation 
"aperiodic"). Out of all the aperiodic cases (including 
overdamped, below), the pendulum takes the least time to 
reach the rest position with the lowest damping (therefore the 
designation "boundary case"). 

 

Overdamped        

With very high damping, the pendulum slowly approaches the 
rest position asymptotically. In this case, the general solution 
to equation (1) goes 

 φ( )          (                  )            

with     √   -  
 

 
. 

 

 

 

 

 

 

 

 

Equipment 

1 Torsion pendulum ....................................... 346 00 

1 DC P w   Supp y  … 6 V,  …5   ............ 521 545 

1 Sensor-CASSY 2 ........................................ 524 013 
1 Rotary motion sensor S .............................. 524 082 
1 CASSY Lab 2 ............................................. 524 220 

1 Multimeter LDanalog 20 .............................. 531 120 

1 Connecting lead, 100 cm, blue ................... 500 442 
1 Connecting lead, 100 cm, red/blue, pair ..... 501 46 

1 PC with Windows XP/Vista/7/8 

Safety note 

Pay attention to the maximum current on the electric mag-
net for the eddy-current brake: 

Imax = 1 A (briefly 2 A) 
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Experiment setup 

 Set up the experiment according to Fig. 1. 

 

 Screw the stand rod into the rotary motion sensor. 

 Carefully insert the axis of the rotary motion sensor S into 
the provided socket on the pendulum (see Fig.  2, left). Do 
this without holding the pendulum, to avoid potential im-
balance. The O-ring must be fully inserted on the axis of 
the rotary motion sensor S for a nonslip connection of the 
two axes (Fig. 2, right). 

 
Fig. 2: Mounting of the rotary motion sensor S onto the torsion pen-
dulum 

 

 Carefully lay the stand rod of the rotary motion sensor S 
on the desk (see Fig. 3) so the two axes are in a straight 
extension without a mechanical load. 

 

 
Fig. 3: Rotary motion sensor S on the torsion pendulum 

 

 Connect the rotary motion sensor S to the  
Sensor-CASSY 2. 

 Connect the power supply and the multimeter to the elec-
tric magnet for the eddy-current brake according to Fig. 4.  

 Do not turn on the power supply yet! 

 

 Set the torsion pendulum so the phase position indicators 
of the excitation and of the pendulum's body point toward 
each other. If necessary, slightly turn the excitation mo-
tor's drive wheel. 

 
 
 

 
Fig. 4: Connection of the eddy-current brake 
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Carrying out the Experiment 

 

 

a) Underdamped / Determining the damping coefficients 

 Load the settings in CASSY Lab 2. Do not start the meas-
urement yet! 

 Turn on the power supply. 

 Observe the current on the measuring instrument. Set and 
write down a current of approx. 0.3 A. 

 If the pendulum is at rest, calibrate the angle of deflection 

    with → 0 ← in CASSY Lab 2. 

 Start the measurement in CASSY Lab 2 with . 

 Move the pendulum until it reaches the stop. Make sure 
the pointer for the displacement does not touch the limit-
ing spring. Hold the pendulum! 

Note: From the start, the pendulum should always be deflect-
ed toward the side with a positive angle of deflection! 

 Let the pendulum swing until it comes to rest. 

 When the pendulum is at rest again, stop the measure-

ment in CASSY Lab 2 with . 

 Repeat the measurement with greater currents (up to 
approx. 1.4 A). 

 

b) Studying the transition from underdamping through 
critical damping to overdamping 

Critically damped 

 Set the current to approx. 1.5 A. 

 Move the pendulum until it reaches the stop and let go. 
The pendulum should approach the rest position as fast 
as possible without crossing the rest position. 

 If necessary – i.e. if underdamped – slightly increase the 
current. 

 Once the current is set, write it down. 

 Repeat the measurement according to the description 
above. 

 

Note: After recording the curve, switch the power supply off to 
let the electric magnet for the eddy-current brake cool down. 

Overdamped 

 Switch the power supply on and set the current to  
approx. 2 A. 

 Repeat the measurement according to the description 
above. 

 After recording the curve, immediately switch the power 
supply off to avoid overheating the electric magnet for the 
eddy-current brake. 

 

 

 

 Safety note 

Pay attention to the maximum current on the electric mag-
net for the eddy-current brake: 

Imax = 1 A (briefly 2 A) 

P1533.labs
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Measurement Example 

Underdamped 

Fig. 5 to 7 represent measurement examples for underdamp-
ing. The x-axes (time) have different scales. 

An alignment according to equation (2) is fit to the data: 

 φ( )          (                     )  

The following table represents the corresponding currents 
and fitting parameters. 

Table 1: Fitting parameters for underdamping. 

I     A B 

A 
 

 
 

 

 
 ° ° 

0.30 0.13 196.4 138.6 -57.3 

0.64 0.50 193.7 138.7 -37.4 

1.34 2.10 158.0 130.0 26.7 

 

Critically damped 

Fig. 8 shows a measurement example for critical damping.  

An alignment according to equation (3) is fit to the data: 

 φ( )          (         )  

In this case, there is one fewer parameter, since the differ-

ence (  -  
 

 
) disappears. 

Table 2: Fitting parameters for critical damping. 

I   A B 

A 
 

 
 ° 

 

 
 

1.6 4.2 131.5 433.2 

 

Overdamped 

Fig. 9 shows a measurement example for overdamping. With 
so much damping, the pendulum slowly "creeps" from the 
deflection position to the rest position without crossing the 
rest position. 

An alignment according to equation (4) is fit to the data: 

 φ( )          (                  )  

  is no longer the damping coefficient here. In the equation, 

there are two decreasing exponential functions with expo-

nents   -(     )     and       -         . The smaller exponent 

determines the creep. 

 

Table 3: Fitting parameters for overdamping. 

I     A B 

A 
 

 
 

 

 
 ° ° 

1.9 1.41 0.16 -145.9 283.2 

 

 

 

Fig. 5: Underdamped with I = 0.3 A. 

 

Fig. 6: Underdamped with I = 0.64 A. 

 

Fig. 7: Underdamped with I = 1.35 A. 
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Fig. 8: Critically damped with I = 1.6 A. 

 

Fig. 9: Overdamped with I = 1.9 A. 

 

Comments 

In Tables 1 and 2, you can see the damping coefficient   is a 
quickly increasing function of the current applied to the elec-
tric magnet for the eddy-current brake. The amplitude's expo-
nential decline is a consequence of the damping, which is 
proportional to the angular velocity. At very slow rotary mo-
tions, this damping is in the magnitude of the mechanical 
friction (very low), and equation (1) gets another term. This 
effect becomes clear in the small phase shift between the 
curve fitting and the measurement values in Fig. 5 and Fig. 6 
at low amplitudes (large t values). 

 

Fig. 8 and 9 have the same scale on the time axis, which 
allows for direct comparison. Critical damping differs from 

overdamping in that the pendulum needs less time to 
come to rest, i.e. until the angle of deflection is 0 again. 


