One-sided and two-sided lever

Objects of the experiment

■ Measuring the force F_{1} for a one-sided and two-sided lever as a function of the load F_{2}.
■ Measuring the force F_{1} for a one-sided and two-sided lever as a function of the load arm x_{2}.

- Measuring the force F_{1} for a one-sided and two-sided lever as a function of the power arm x_{1}.

Principles

A lever is defined as a rigid body rotating on a fixed pivot (often called the fulcrum) which can be used to raise and move loads. The segments from the pivot to the point of application of the force and to the load are termed the lever arms, specifically the power and load arms respectively. In a two-sided lever, the force F1 and the load F_{2} act in the same direction on opposite sides of the pivot; in a one-sided lever, the forces act in opposite directions on the same side of the pivot. The law of levers applies for both lever types:
$F_{1} \cdot x_{1}=F_{2} \cdot x_{2}$
x_{1} : power arm, x_{2} : load arm
This law can be explained on the basis of the more general concept of equilibrium of angular momentums and forms the basis for all types of mechanical transmission of force.

The first experiment examines the law of levers for one-sided and two-sided levers. The object is to determine the force F_{1} which maintains a lever in equilibrium as a function of the load F_{2}, the load arm x_{2} and the power arm x_{1}. The load is applied using multiple 50 g weights suspended one below the other. For the load
$F_{2}=m \cdot g$
g: gravitational acceleration
of a weight, the value 0.5 N can be assumed with sufficient accuracy.

Fig. 1 Experiment setup for verifying the law of levers for a one-sided (left) and two-sided (right) lever

Apparatus

1 Lever, 1 m	34260
1 Set of 12 weights, 50 g each	34261
1 Dynamometer, 2 N	31445
1 Dynamometer, 5 N	31446
1 Stand base, V-shape, 20 cm	30002
1 Stand rod, 47 cm	30042
1 Leybold multiclamp	30101

Setup and carrying out the experiment

a) Two-sided lever

Set up the experiment as shown in Fig. 1 (top).
a1) Measuring as a function of the load arm F_{2} :

- Suspend two, four and six weights at $x_{2}=24 \mathrm{~cm}$ and attach a dynamometer 2 N at $\mathrm{x}_{1}=48 \mathrm{~cm}$ to determine the force F_{1} required to maintain the lever in a horizontal position.
a2) Measuring as a function of the load arm x_{2} :
- Suspend four weights at $x_{2}=48,36$ and 24 cm and attach a dynamometer 2 N at $\mathrm{x}_{1}=48 \mathrm{~cm}$ to determine the force F_{1} required to maintain the lever in a horizontal position.
a3) Measuring as a function of the power arm x_{1} :
- Suspend four weights at $x_{2}=48 \mathrm{~cm}$ and attach a dynamometer 5 N at $\mathrm{x}_{1}=48,36$ and 24 cm to determine the force F_{1} required to maintain the lever in a horizontal position.

b) One-sided lever

Set up the experiment as shown in Fig. 1 (bottom).
b1) Measuring as a function of the load F_{2} :

- Suspend four, eight and 12 weights at $x_{2}=12 \mathrm{~cm}$ and attach a dynamometer 2 N at $\mathrm{x}_{1}=48 \mathrm{~cm}$ to determine the force F_{1} required to maintain the lever in a horizontal position.
b2) Measuring as a function of the load arm x_{2} :
- Suspend four weights at $x_{2}=12,24$ and 36 cm and attach a dynamometer 2 N at $\mathrm{x}_{1}=48 \mathrm{~cm}$ to determine the force F_{1} required to maintain the lever in a horizontal position.
b3) Measuring as a function of the power arm x_{1} :
- Suspend three weights at $x_{2}=48 \mathrm{~cm}$ and attach a dynamometer 5 N at $\mathrm{x}_{1}=36,24$ and 12 cm to determine the force F_{1} required to maintain the lever in a horizontal position.

Measuring example and evaluation

a) Two-sided lever

Table 1: Force F_{1} as a function of the load $F_{2}\left(x_{1}=48 \mathrm{~cm}, x_{2}\right.$ $=24 \mathrm{~cm}$)

$\frac{\mathrm{F}_{2}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{2} \cdot \mathrm{x}_{2}}{\mathrm{Nm}}$	$\frac{\mathrm{F}_{1}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{1} \cdot \mathrm{x}_{1}}{\mathrm{Nm}}$
1.0	0.24	0.5	0.24
2.0	0.48	1.0	0.48
3.0	0.72	1.5	0.72

Table 2: Force F_{1} as a function of load arm $x_{2}\left(x_{1}=48 \mathrm{~cm}, F_{2}\right.$ $=2.0 \mathrm{~N}$)

$\frac{\mathrm{x}_{2}}{\mathrm{~cm}}$	$\frac{\mathrm{~F}_{2} \cdot \mathrm{x}_{2}}{\mathrm{Nm}}$	$\frac{\mathrm{F}_{1}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{1} \cdot \mathrm{x}_{1}}{\mathrm{Nm}}$
24	0.48	1.0	0.48
36	0.72	1.5	0.72
48	0.96	2.0	0.96

Table 3: Force F_{1} as a function of power arm $x_{1}\left(x_{2}=48 \mathrm{~cm}\right.$, $\mathrm{F}_{2}=2.0 \mathrm{~N}$)

$\frac{\mathrm{x}_{1}}{\mathrm{~cm}}$	$\frac{\mathrm{~F}_{1}}{N}$	$\frac{\mathrm{~F}_{1} \cdot \mathrm{x}_{1}}{\mathrm{Nm}}$	$\frac{\mathrm{F}_{2} \cdot \mathrm{x}_{2}}{\mathrm{Nm}}$
24	4.0	0.96	0.96
36	2.75	0.99	0.96
48	2.0	0.96	0.96

b) One-sided lever

Tab. 4: Force F_{1} as a function of the load $F_{2}\left(x_{1}=48 \mathrm{~cm}, x_{2}=\right.$ 12 cm)

$\frac{\mathrm{m}_{2}}{\mathrm{~g}}$	$\frac{\mathrm{~F}_{2}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{2} \cdot \mathrm{x}_{2}}{\mathrm{Nm}}$	$\frac{\mathrm{F}_{1}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{1} \cdot \mathrm{x}_{1}}{\mathrm{Nm}}$
200	2.0	0.24	0.5	0.24
400	4.0	0.48	1.0	0.48
600	6.0	0.72	1.5	0.72

Table 5: Force F_{1} as a function of load arm $x_{2}\left(x_{1}=48 \mathrm{~cm}, F_{2}\right.$ $=2.0 \mathrm{~N}$)

$\frac{\mathrm{x}_{1}}{\mathrm{~cm}}$	$\frac{\mathrm{~F}_{2} \cdot \mathrm{x}_{2}}{\mathrm{Nm}}$	$\frac{\mathrm{F}_{1}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{1} \cdot \mathrm{x}_{1}}{\mathrm{Nm}}$
12	0.24	0.5	0.24
24	0.48	1.0	0.48
36	0.72	1.5	0.72

Table 6: Force F_{1} as a function of power arm $x_{1}\left(x_{2}=48 \mathrm{~cm}\right.$, $\mathrm{F}_{2}=1.0 \mathrm{~N}$)

$\frac{\mathrm{x}_{1}}{\mathrm{~cm}}$	$\frac{\mathrm{~F}_{1}}{\mathrm{~N}}$	$\frac{\mathrm{~F}_{1} \cdot \mathrm{x}_{1}}{\mathrm{Nm}}$	$\frac{\mathrm{F}_{2} \cdot \mathrm{x}_{2}}{\mathrm{Nm}}$
12	4.0	0.48	0.48
24	2.0	0.48	0.48
36	1.25	0.45	0.48

Results

For one-sided and two-sided levers, the law of levers applies: "force x power arm = load x load arm".

